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On Non-Fourier Temperature Wave and 
Thermal Relaxation Time 1 

D. W. Tang z and N. Araki 23 

In this paper, the non-I-ourier effects in tl material under heating flux with an 
aclual pulse and periodic temporal i~rofile ~lre investigated after introducing the 
physical nlechanisnl of the thermal relaxation model. By using the analytical 
solution of the non-l:ourier hyperbolic conduction equation, a discussion about 
the wave characteristics of non-Fourier conduction is given, and the manner in 
which relaxation time affects the teml~erattLre behavior is discussed. Then a 
measuring medlod for the relaxation time is suggested for these two kinds of 
heating tlux. 

KEY WORI)S: laser-pulse heating: non-Fourier heat conduction, periodic 
heating: relaxation time: temperature wave. 

1. I N T R O D U C T I O N  

The use of heat sources, such as laser and microwave, with extremely short 
durations or very high fi'equencies, has found numerous applications 
related to surface annealing of metals [1 ] ,  sintering of ceramics [2 ] ,  
exhibiting microscopic heat transport dynamics [3 ] ,  measuring physical 
properties of thin films [4 ] ,  etc. In such situations, the classical Fourier 
heat conduction model could become inaccurate. 

The Fourier model is an approximate description of the real physical 
process, while it is suitable for common engineering problems under most 
conditions. A more generalized heat conduction theory, the non-Fourier 
theory, was formulated about 40 years ago, in which the Fourier equation 
was modified to include effects of the thermal relaxation process. This was 
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confirmed by some experiments exhibiting second sound in solid He several 
years later [ 5-7 ]. 

This paper presents an investigation of performing the non-Fourier 
behavior in materials subjected to a heating flux with an actual pulse and 
periodic temporal profile. First, the physical mechanism of the relaxation 
model is introduced. Then a discussion of the wave characteristics of non- 
Fourier conditions is given, and the manner in which relaxation time 
affects the temperature wave behavior is discussed. Finally, the measuring 
method for the relaxation time is suggested for these two kinds of heat flux. 

2. THERMAL RELAXATION M O D E L  OF MATERIALS 

The Fourier diffusion model predicts theoretically that a thermal dis- 
turbance at any point in a medium is instantaneously felt at every other 
point in the medium. Such a state of affairs is clearly not physical. To 
eliminate this dilemma, Cattaneo [-8] and Vernotte [.9] independently 
postulated a time-dependent relaxation model lbr the heat flux in solids 
expressed as 

3q(r, t) 
q(r, t) = - 2  V T - r o  c3t (1) 

where ro is a relaxation time, q is the heat flux vector, r is the spatial 
vector, t is the time, and 2 is the thermal conductivity. The physical 
significance of the relaxation behavior and the estimation method of the 
relaxation time have attracted significant attention. About the relaxation 
behavior, it could be simply concluded that there is a finite buildup time 
for the onset of a thermal current after a temperature gradient is imposed 
on a specimen. In other words, heat flow does not start instantaneously but 
rather grows gradually with a relaxation time. The microscopic mechanism 
is quite complex and dependent on the kind of material. Simply speaking, 
the relaxation time is associated with the communication time between 
microparticles such as photons, electrons, and phonons. Combining the 
energy conservation equation 

OT 
- V - q  +S(r ,  t ) = c - -  (2) 

Ot 

with Eq. ( 1 ) leads to a description of an unsteady temperature profile in the 
form of the hyperbolic equation 

V2T(r,t)+~[S(r, t) 3S(r, t)] 1 3T(r, t) roa2T(r, t) 
+ r,, 3 ~ 1  - a at t- a at-" (3) 
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where S(T, t) is a heat source in the material, T is the temperature, c is the 
heat capacity per unit volume, and a is the thermal diffusivity. 

Physically, the relaxation time is regarded as the macroscopic 
parameter of a series of microscopic interaction in a material, it describes 
the mean time effect of all these microscopic relaxation processes, such 
as electron-electron, electron-phonon, and phonon-phonon scattering. 
Obviously, it is not the simple summation of the characteristic time of these 
microscopic relaxation processes. How to relate the relaxation time to these 
microscopic processes is still a problem now. In other words, the estima- 
tion method of the value of the relaxation time is not established yet. All 
of the published works are only about the estimation method of the charac- 
teristic time for one of the single microscopic relaxation processes. 

In 1963, Chester [ 10] advanced a method for estimating the relaxa- 
tion time of a phonon gas. He assumed that the square of the thermal wave 
velocity was one-third of the square of the phonon group velocity s 2, then 
he obtained 

32 
Tpl ........ = ~  (4) 

S-C 

In 1969, Maurer [11 ] derived a time-dependent relaxation model for the 
heat flux in metals from the quantum mechanical form of the Boltzmann 
transport equation. In this work, the phonons were assumed to be in ther- 
mal equilibrium at all times, and the Lorentz approximation was used to 
treat electron-phonon interactions. He obtained the following approximate 
expression for the relaxation time of the electron gas 

3m). 
(5) Tcleclr~ 7~2tik2T 

where m is the electron effective mass, n is the number of electrons per unit 
volume, and k is the Boltzmann constant. These two formulas are 
employed frequently to estimate the relaxation time of solids by researchers 
without experimental confirmation. 

3. T E M P E R A T U R E  WAVES 

In this study, the conduction heat transfer in a one-dimensional medium 
is considered. For heating flux, two typical temporal profiles, an actual 
pulse and a periodic type, are chosen because they are the most frequently 
used heating types in engineering. For convenience in the subsequent 
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analysis, the real coordinate is replaced by the corresponding dimensionless 
one as introduced in the following: 

x t 
'I , ~ = - -  ( 6 )  

2 ~ " 2to 

The non-Fourier temperature wave behaviors for these two considered 
conditions are performed in the following two subsections. 

3.1 .  A F i n i t e  M e d i u m  U n d e r  L a s e r - P u l s e  H e a t i n g  

First, an one-dimensional heat conduction problem in a material of 
thickness L with initial temperature distribution T(x, 0 ) = 0  (x is the direc- 
tion along the thickness), constant thermal properties, and insulated 
boundaries is considered. From time t = 0 ,  its front surface ( x = 0 )  is 
exposed to a laser-pulse heat flux, whose temporal shape has a typical form 

[ Ip q ( t ) = Q , , ~ e  ' (7) 
t;, 

where t v and Q,, denote the time duration and total energy of a single pulse 
at the unit surface, respectively. The pulsed energy is assumed to be 
absorbed uniformly in a small depth 6 near the fi'ont surface, which can be 
treated as a pulse energy source in the material as follows: 

t I i i  O ~ x ~ 6  

6 < x ~ L  

(8) 

Then the governing equation is Eq. (3) in one-dimensional form, and the 
initial and boundary conditions are 

@T(O, t) OT(L, t) 
. . . .  0 (9) &u &v 

aT(x, 0) 
- - - 0 ,  T(x, O)=O (10) 

at 

The analytical solution can be derived by the Green's function method and 
infinite integral transform technique; details are given in the literature [ 12]. 
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Using the introduced dimensionless quantities of Eq. (6) and the quantities 
for this problem as 

001, C)= )' ~ T(x ,  t), 
L 6 __ tp 

ql 2 ~ - ~ . '  J r / = - - 2  x//-~. ' ~v - --2T. ( 1 1 ) 

the solution is obtained as 

where 

+ - -  e ; ' nnq sin(nrr drl/ql) 
Z COS 

ql . = t ql n~z Zhl/i h 

x ~ ( 2 _ l / ~ p ) _ ) '  I e~(, j~,,q ?,2sinfld )'~ 
)'J )' fl F ?' cosfld (12) 

(mz~-~ ~, - 2dp + 1, 7 , = [  4 - ( n ~ ' )  2] d-'p-- 4~v 
) ' = \ ~ t /  \ r h /  J 

),2= 4 - 3 \ ~ ]  _ ; - _  2 - \ r h /  J ~ v + l  

fl = x / ( n r O h  )~- -- 1 

+ 1 13a) 

13b) 

13c) 

Utilizing Eq. (12), numerical computations are performed to display 
the behavior of the temperature waves in a finite medium irradiated by a 
laser pulse in the form of Eq. (7), the calculated temperature waves are 
illustrated in Figs. 1 and 2. For the subsequent discussion to have a clear 
physical picture, the significance of the introduced dimensionless quantities 
must be well understood. From Eqs. (6) and (11 ), 

x x L 
i /= - , and ql = 2vro 

( 14) 
2 ~ 2yr. 

where v = ./~/r~, is the propagation speed of the temperature wave. Then 
q denotes the ratio of the characteristic physical length scale to the thermal 
length scale (mean free path, yr.). ~ = t/2ro is the ratio of the physical time 
scale of the thermal process to the thermal relaxation time. 

Figure 1 shows the temperature profiles at various positions through- 
out a finite medium with a thickness of q~ = 1 irradiated by a laser pulse of 
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Fig. 1. Evo lu t i on  of temperature profiles inside a finite medium with 
thickness i h = 1 i r r ad i a t ed  by  a laser pulse with duration 4~ = 0 . 2 .  The 
absorptive depth J q  = 0.02. 

~t =0.2.  From the figure, the behavior of the non-Fourier temperature 
wave can be observed clearly. Several series of wave peaks (P and R) 
shown in the figure indicate the propagation and reflection of the tem- 
perature wave. It can be seen that by several times of propagation and 
reflection between the two surfaces of the medium, the portion of the tem- 
perature wave is dissipated and the temperature of the medium becomes 
uniform. 

Figure 2 shows the propagation (r  and ~ = 0 . 8 5 )  and reflection 
(~ = 1.65 ) of the temperature wave inside a finite medium with a thickness 
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Propagation of the temperature waves in a finite 
medium. 
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of I h = 1 irradiated by a laser with a pulse duration of (~ = 0.1. By checking 
the position of the wave front at a different time, it is found that ~ = qwr, 
where r/,,, r is the propagating distance of wave front at time ~ in a dimen- 
sionless system, for example, when ( =  0.2, the wave front is at the position 
ll,,.r=0.2. If it is converted to a real coordinate system by using Eqs. (6), 
( 11 ), and (14) and v = Xwdt, where Xwr is the propagating distance of the 
wave front at time t. This means that the hyperbolic heat conduction equa- 
tion predicts a wave with a propagation speed of v, which is determined by 
the relaxation time. 

3.2. A Semiinfinite Medium Under Periodic Heating 

In the case of a periodic heating flux, for a semiinfinite medium the 
temperature wave solution was derived by Yuen and Lee [ 13] in 1989, and 
for a finite medium two forms of solutions were given recently by Tang and 
Araki [ 14, 15]. Comparison of the two results shows that the solution of 
a semiinfinite medium takes a relatively simple form, and its temperature 
response profiles are smooth periodic curves because, in this situation there 
is no reflection of temperature wave like that in the finite medium. For  con- 
venience, in discussion and suggestion of measuring methods of relaxation 
time, here we choose the semiinfinite medium. For a one-dimensional semi- 
infinite material subjected to a periodic surface heat flux, the governing 
equation is the one-dimensional form of Eq. (3) with heat source 
S(r, t}= 0; the boundary and initial conditions are given by 

- 2  aT(O, t) - -  = qoe i .... (15a) 
Ox 

aT(w,  t) 
T(c~, t ) -  - -  = 0  (15b) 

Ox 

OT(x, O) 
T(x ,  O ) -  Ox = 0  (15c) 

where q~, and co are the amplitude and frequency of the surface heat flux 
oscillation, respectively. Using the introduced dimensionless quantities of 
Eq. (6) and the quantities for this problem 

2 1 
0 - -  T(x,  t), ~ , , , -  (16) 

qo x / ~ o  - 2~176 

84(1 18 2-14 
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the temperature response is obtained as 

0( ~ 1, ~ ) = H( #. - q ) / , , ( x / i - "  - Jl-') 

where H( ) is the Heaviside unit step function and I.( ) is the modifed  
Bessel function of zero order. For a periodic temperature response, the 
most useful form is its long time limit in actual applications. Let d ~ ~, 
(i.e., t--, ~ ); the temperature profile can be written in closed form as 

O(q, ~ )  = [ 1 + (1 /2d . , , , )  2 ] t 4 
v/.-~/2F.," e i~,, h-~,:e,.ee.,~+,~ i,/,-.+t,-~,/ (18} 

where 

I 1 (J ( ' )  )]  [ '/,/ / ' )  )]  Jr.= ~ 1+ ~ +l  ~ = ~ 1+ ~ - 1  

(19at 

r = ~ t a n  I - ~  (19b} 

Utilizing Eq. (18), numerical computat ions are performed to display 
the behavior of the temperature waves in a semiinfinite medium irradiated 
by a periodic heat flux in the form of Eq. (15a): the calculated temperature 
waves are illustrated in Fig. 3. Ill Fig. 3, the temperature profiles at various 
positions from r / = 0  to q = 1.5 m the semiinfinite medium subjected to a 
periodic heat flux with period of ~,.,=0.5 are shown. Here the starting 
point of time (~=01  is actually a monlent alter a relative long time from 
the beginning of heating. Because there is no reflection of temperature wave 
for a semiinfinite medium, the temperature response curves have the same 
form as that from Fourier theory, without a jump point on them as in a 
finite medium. The differences from those of the Fourier model are that 
they have different phase lag and amplitude differences after propagat ion of 
a distance. The non-Fourier  phase lag and amplitude difference are 
expressed as 

Zl~n 
= K ~  + K  (20a) 

A:p v 

AAll K+ K (20b) 
AAp 
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Fig. 3. Evolution of temperature profiles inside a semiinfinile 
medium exposed to a periodic heating Ilux ~ith frequency 
~,., = 0.5 on the surlace (q = 0). 

where A~o( =cp2- ~or) and AA( =A~/A z) are the phase lag and amplitude 
ratio of temperature responses at two different positions in the medium, 
and the subscripts H and P denote non-Fourier and Fourier. From 
Eq. (19), with r,, ~ 0, Eq. (20) approaches 1 and the non-Fourier result 
reduces to the Fourier one. 

4. M E A S U R E M E N T  M E T H O D  OF RELAXATION TIME 

According to the discussion about the two kinds of heating flux, the 
non-Fourier behavior of heat conduction is determined mainly by the 
relaxation time, that is, the non-Fourier behavior of temperature response 
should reflect the thermal relaxation processes. Then inversely, it is possible 
lbr us to obtain the relaxation time by using the measured temperature 
responses. In the following, the measurement method lbr the two con- 
sidered kinds of heating flux is suggested. 

4.1. For a Pulse Healing Flux 

Actually the temperature wave always exists inside the film irradiated 
by a laser pulse. But at the rear surface the wave characteristics cannot 
always appear, or the wave front cannot always be distinguished. The 
possibility of observation of the temperature wave is determined mainly by 
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three factors: the thickness of the film, heat pulse duration, and absorption 
depth. The calculation in the preceding section shows that, when the 
absorption depth is small enough, for q~ ~ 1 and ~ ~0.5, i.e., L ~ 2  x / ~ o  
and t v ~ To, the temperature wave is surely able to be felt at the rear sur- 
face. As an example, a metal with high thermal diffusivity is considered, at 
room temperature, a = 1 . 2 •  4m_,.s J, and r o = 1 0 - 9 - 1 0  ~2s [16],  
the experimental condition can be estimated as t v =  10-9-10-~2s and 
L = 6.9 • 10 7-2.2 • 10 ~m. According to the above calculation results, it 
can be seen that, A~ = 2~h, where , ~  is the time difference between the two 
peaks in the curve of dimensionless temperature response at the rear sur- 
face, then along with Eq. (11), the following is obtained: 

A t  2 L  a z i t  2 
i.e., ro = 4L 2 (21) 

2to 2 x / ~ o '  

where At is the real time difference between the two peaks in the tem- 
perature response curve. If the temperature response at the rear surface is 
observed, At would be measured. Then the relaxation time can be 
calculated from Eq. (21). 

4.2. For  a Per iod ic  H e a t i n g  F l u x  

According to Eq. (16) and Eq. (18), the phase lag and amplitude ratio 
of the non-Fourier  temperature responses at two positions with Ax apart 
can be expressed as follows: 

,22, 
2 2 

, dA  H = 2 2 

Rewriting Eqs. (22) and (23), we obtain the expression of the relaxation 
time as 

B 2 - 1 2a A~o~ 
z ~  2B~o with B = - - o ~  Ax- (24) 

1 - C 2 2a AA~ 
with C = - -  (25) 

r o -  2C co  ' o~ A x  2 
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Fig. 4. Amplitude ratio and phase lag ratio of the non- 
Fourier to the Fourier conduction as functions of .)ro. 

Then if the phase lag or amplitude ratio is measured, by using Eq. (24) or 
(25), the relaxation time can be obtained. For the Fourier heat conduction, 
according to the lbrmula of the phase lag and amplitude ratio, we have 
B =  1 and C =  1, then to=0 .  From Eq. (20), the amplitude ratio and the 
phase lag ratio of the non-Fourier to the Fourier conduction are functions 
of coro (as shown in Fig. 4). Figure 4 shows that the Fourier heat conduc- 
tion predicts the minimum limit of the phase lag and the maximum 
damping of the amplitude ratio. From the figure, when coro> 1, i.e., 
~o > I / r . ,  the phase lag ratio of the non-Fourier to the Fourier is bigger 
than 1.6, the non-Fourier effect is still quite evident. Considering the same 
materials as discussed in the above section for pulse heating, if we want to 
observe the non-Fourier effect, the heating flux should have a frequency of 
o~> 10 '~- I01-" Hz. From Eq. (18), it is known that temperature responses 
would also change with this frequency. When we choose two measurement 
points in the material which are 1 cm apart, i.e., A x  = 1 cm, according to 
Eq. (23), the amplitude decay should be A A H  ~ 104-10 s, which means that 
the amplitude at the second measurement point would be 104-105 times 
smaller than that of the first point. Therefore, we have to measure and 
compare two periodic temperature responses whose amplitudes are quite 
different from each other. 

5. CONCLUDING REMARKS 

By using analytical solutions of the non-Fourier hyperbolic con- 
duction equation, the wave behavior of heat conduction in a finite and a 
semiinfinite medium under an actual pulse and a periodic heating flux is 
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demonstrated. The effect of the relaxation time on the temperature 
response is investigated and the interrelation between some measurable 
quantities from the temperature responses and the relaxation time is estab- 
lished by Eq. (21) for pulse heating and Eqs. (24) and (25) for periodic 
heating. This makes it possible for us to suggest the measurement method 
and conditions for the relaxation time. The reliability of these methods 
must be checked by experiments, which will be undertaken in the future. 
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